41 interface device 1928 can provide a feature to expand the user interface 1808 the device application into the entire available space of the freeform window 1804. A fourth user interface device 1920 may provide a control to change the user interface 1808 to a second user interface that displays other information. Other user interface devices that provide other functionality are contemplated as one skilled in the art would understand. An embodiment of a method 2000 for providing a freeform window is shown in FIG. 20. While a general order for the 10 steps of the method 2000 is shown in FIG. 20. Generally, the method 2000 starts with a start operation 2004 and ends with an end operation 2024. The method 2000 can include more or fewer steps or can arrange the order of the steps differently than those shown in FIG. 20. The method 2000 can be 15 executed as a set of computer-executable instructions executed by a computer system and encoded or stored on a computer readable medium. Hereinafter, the method 2000 shall be explained with reference to the systems, components, modules, software, data structures, user interfaces, etc. 20 described in conjunction with FIGS. 1-19. A computer system 1104 and a device 100 can be connected, physically, electrically, wirelessly, etc. The device 100 can automatically recognize the connection and functionally connect the device 100 with the computer system 1104 to 25 form a unified system 1100, in step 2008. In other embodiments, a user may provide input to functionally connect the device 100 with the computer system 1104. In response to the function connection, the device 100 can generate a unified desktop 1300, in step 2012. The unified desktop 1300 can 30 expand or create a single user interface for the unified system 1100 across the screens of the device 100 and the computer system 1104. The device 100 may then execute a device application, in step 2016. In embodiments, the device 100 may receive a 35 selection of a device application from the unified desktop 1300. For example, the user may select a shortcut 1812. Regardless, the device 100 can execute the selected device application in the computer system environment. When the device 100 executes the device application, a freeform window 1804 may be created to encapsulate or display the user interface 1808 of the device application. Thus, the device 100 displays the user interface 1808 of the device application in the freeform window 1804, in step 2020. An embodiment of a method 2100 for executing a device 45 application in a freeform window is shown in FIG. 21. A general order for the steps of the method 2100 is shown in FIG. 21. Generally, the method 2100 starts with a start operation 2104 and ends with an end operation 2124. The method 2100 can include more or fewer steps or can arrange the order of the steps differently that hose shown in FIG. 21. The method 2100 can be executed as a set of computer-executable instructions executed by a computer system and encoded or stored on a computer readable medium. Hereinafter, the method 2100 shall be explained with reference to the systems, 55 components, modules, software, data structures, user interfaces, etc. described in conjunction with FIGS. 1-20. The processor **204** of the device **100** can receive a selection of a device application, in step **2108**. A selection can be a user interface action conducted on a shortcut **1812** or other user 60 interface device. Regardless, the user conducts a user interface action to execute a device application. In response to receiving the selection by the user, the device **100** can determine any device application feature, controls, or other functionality to be provided for the user interface **1808**, in step 65 **2112**. The features, controls, etc. can be functions that conduct and action or complete a process for the device applica- 42 tion and may not function in a typical computer system environment. These functions can include expanding or contracting the window, providing alternative displays, entering information, executing sub-processes, etc. Some possible features or controls are as discussed with FIG. 19. The processor 204 of the device 100 can provide a freeform window 1804 for the user interface 1808 of the device application, in step 2116. The freeform window 1808 can be as described in FIGS. 18 and 19. As part of the freeform window 1808, the device may provide one or more user interface devices that enable the features or controls determined by the device 100, in step 2120. The user interface devices may be as described in conjunction with FIG. 19. Furthermore, while the exemplary aspects, embodiments, and/or configurations illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined in to one or more devices, such as a tablet-like device, or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switch network, or a circuit-switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system. For example, the various components can be located in a switch such as a PBX and media server, gateway, in one or more communications devices, at one or more users' premises, or some combination thereof. Similarly, one or more functional portions of the system could be distributed between a telecommunications device(s) and an associated computing device. Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications. Also, while the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects. In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the disclosed embodiments, configurations and aspects includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other